RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)		
B.A./B.Sc. SIXTH SEMESTER EXAMINATION, MAY 2019 THIRD YEAR [BATCH 2016-19]		
Date : 10/05/2019 PHYSICS (Honours) Time : 11 am - 1 pm Paper : VII (Group - A) Full Marks :		
Answer any five questions of the following: $[5 \times 10]$		
1. a)	State and explain the cross section of nuclear reaction. Give its geometrical significance.	(2+2)
b)	Explain why heavy nuclei are more fissionable than the lighter one.	(2)
c)	Calculate the energy released in the fusion of two ${}^{12}C_6$ nuclei. Use the mains formula [Given (in MeV unit) : $a_v = 15.75$, $a_s = 17.92$, $a_A = 23.51$ and $a_p = 33.5$]	la (4)
2. a)	State and explain Bohr's hypothesis of the formation of compound nucleus and subsequent decay. Describe an experiment verifying this hypothesis.	ts (3+3)
b)	Define threshold energy of a nuclear reaction.	(1)
c)	Write down the reaction for He formation from protons. Calculate the Q value of the reaction.	ne (1+2)
3. a)	Explain the occurrence of magic nuclei using shell model of nuclei.	(2)
b)	Explain energetics of nuclear fusion using LDM and show that the condition f spontaneous fusion is $\frac{Z^2}{A} > 51$	or (2+3)
c)	Comment which of the two uranium isotopes is more fissionable than the other. What nucleosynthesis?	is (2+1)
4. a)	Discuss the principle of phase stability.	(3)
b)	Obtain the betation condition $\frac{d\phi}{dt} = 2\pi r^2 \frac{dB}{dt}$, where the symbols have their usual meaning	g. (5)
c)	Calculate the energy of emergent proton from a cyclotron, given magnetic field is 0. Wb/m ² and extreme radius is 1 m. (mass of proton = 1.673×10^{-27} kg)	72 (2)
5. a)	In a series disintegration $A \rightarrow B \rightarrow C$ (stable), show that if $A_0 \lambda_A$ is constant activity of very long lived source, the number of atoms of C collected in a time t is given by :	a
	$C = A_0 \lambda_A \left[t - \frac{1}{\lambda_B} \left(1 - e^{-\lambda_B t} \right) \right] = A_0 \lambda_A t - B$	(4)
b)	A mean range of ${}^{210}P_0 \alpha$ - particles (E = 5.3 MeU) in an at NTP is 0.03842 m. Find a range in aluminium (A=27, density = 2700 kg/m ³). What is staggering of range of α particles?	its α- (3+1)

c) Explain why, unlike α - particles, β - particles are not emitted with a single energy. (2)

6. a) Compare between the cross sections for different interactions of γ - ray with matter. Why is β decay called a weak process? (3+1)

(3)

(4)

(4)

(4)

(2)

- b) What are dominant multiples in the following gamma- ray transactions :
 - i) $\left(\frac{1}{2}\right)^{-} \rightarrow \left(\frac{3}{2}\right)^{+}$
 - ii) $2^+ \rightarrow 1^+$
 - iii) $2^+ \rightarrow 1^-$
- c) Show that in the process of β decay the conservation of angular momentum breaks down.
- 7. a) Which of the following interctions are allowed or disallowed? Explain with reasons.
 - i) $\overline{\wedge}^+ + p \rightarrow \Sigma^+ + \overline{\wedge} + K^0$
 - ii) $\overline{\wedge}^{-} + p \rightarrow \overline{\Sigma}^{-} + \overline{\wedge}^{+}$
 - iii) $e^- + e^+ \rightarrow \mu^- + \mu^+$
 - iv) $e^- + p \rightarrow u_{\mu} + n$
 - b) $\Delta(1232)$ is a pion-nucleon $(\overline{\wedge} N)$ resonance of iso spin $\frac{3}{2}$. What are its different charge states? (2)
 - c) Consider a rotationally invariant system in three dimensions. How does an energy eigenstate of such a system transform under parity?
- 8. a) What do you mean by charge conjugation? Find the charge parity of a photon. Show that invariance under charge conjugation does not allow a decay of $\overline{\wedge}^0$ to an odd number of photons.
 - b) Find the quark content of the following particles.
 - i) Λ^0 ii) p iii) K^+ iv) $\overline{\wedge}^-$
 - c) A pion at rest decays into a muon and a neutrino. Write down the decay scheme. Using 4 vector formulation find the energy of the neutrino in terms of the masses of $\overline{\wedge}$ and μ . (4)

- × -